Activation of P2z purinoceptors diminishes the muscarinic cholinergic-induced release of inositol 1,4,5-trisphosphate and stored calcium in rat parotid acini. ATP as a co-transmitter in the stimulus-secretion coupling.

نویسندگان

  • T D Jørgensen
  • J Gromada
  • K Tritsaris
  • B Nauntofte
  • S Dissing
چکیده

The effect of extracellular ATP on the intracellular free Ca2+ concentration ([Ca2+]i) and inositol phosphate production following stimulation with the muscarinic cholinergic agonist acetylcholine (ACh) was investigated in isolated rat parotid acinar cells. Stimulation of rat parotid acinar cells with ATP4- results in a rise in [Ca2+]i that is due to influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores. Stimulation with purinergic agonists revealed that both influx as well as Ca2+ release from intracellular stores was mediated through activation of P2z receptors. The Ca2+ mobilization from intracellular stores was due to production of Ins(1,4,5)P3 and was inhibited by U73122, an inhibitor of phospholipase C-coupled processes. Under Ca(2+)-free conditions ATP4- caused a dose-dependent inhibition (IC50 = 8 microM) of the ACh-evoked Ca2+ release. The inhibitory effect of ATP4- is due to activation of the P2z purinoceptors, which results in a strong reduction in the ACh-induced inositol phosphate production. Prestimulation with 100 microM ATP4- reduced the amount of Ins(1,4,5)P3 formed after maximal ACh stimulation by 91%. In conclusion, the inhibitory effect of ATP4- on the ACh-mediated response is due to interactions of the activated P2z receptor with the phospholipase C-coupled processes underlying the muscarinic cholinergic response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. Relationship to calcium signalling.

Stimulation of rat parotid acinar cells by the muscarinic cholinergic receptor agonist methacholine results in the formation of inositol 1,4,5-trisphosphate [1,4,5)IP3) and inositol cyclic 1:2,4,5-trisphosphate [c1:2,4,5)IP3) which, after 40 min, accumulate to a ratio of 1:0.57. The turnover rates of these inositol trisphosphates have been determined in cholinergically stimulated rat parotid ce...

متن کامل

Acetylcholine Increases Intracellular Ca in Taste Cells Via Activation of Muscarinic Receptors

Ogura, Tatsuya. Acetylcholine increases intracellular Ca in taste cells via activation of muscarinic receptors. J Neurophysiol 87: 2643–2649, 2002; 10.1152/jn.00610.2001. Previous studies suggest that acetylcholine (ACh) is a transmitter released from taste cells as well as a transmitter in cholinergic efferent neurons innervating taste buds. However, the physiological effects on taste cells ha...

متن کامل

Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing ...

متن کامل

Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands.

A complete separation of myo-inositol 1,4,5-[4,5-(32)P]trisphosphate prepared from human erythrocytes, and myo-[2-3H]inositol 1,3,4-trisphosphate prepared from carbachol-stimulated rat parotid glands [Irvine, Letcher, Lander & Downes (1984) Biochem. J. 223, 237-243], was achieved by anion-exchange high-performance liquid chromatography. This separation technique was then used to study the metab...

متن کامل

Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors.

Previous studies suggest that acetylcholine (ACh) is a transmitter released from taste cells as well as a transmitter in cholinergic efferent neurons innervating taste buds. However, the physiological effects on taste cells have not been established. I examined effects of ACh on taste-receptor cells by monitoring [Ca2+]i. ACh increased [Ca2+]i in both rat and mudpuppy taste cells. Atropine bloc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 312 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1995